SINGULAR PERTURBATION ANALYSIS OF AOTV
RELATED TRAJECTORY OPTIMIZATION PROBLEMS
PROGRESS REPORT

14 April - 30 October, 1986

November 1986

Drf) LWzl €Y

NAG1-C(0

/N — /3

¢372/
§r

Research Supported by NASA - Langley Research Center

NASA Grant No. NAG-1-660
[ ae——— g

Principal Investigator: Dr. Anthony J. Calise

Research Assistant: Mr. Gyoung Bae
NASA Grant Monitor: Dr. Christopher Gracey

(BASA-CR-180301) SINGULAR PERTUREATION
ANALYSIS OF AOTIV RELATED TRAJECTOCRY
CPTIMIZATICN FECELENMS Progress Report, 14

- 30 Oct. 19686 (Georgia 1lnst. of

Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, GA 30332

N87-26927

Unclas

Tech.) 16 p Avail: NTIS HC A02/MF AO1 H1/13 0063721



Table of Contents

Section

SUMMARY

1. Problem Formulation . . . . . . . . . . ..
2. Singular Perturbation Analysis

2.1 Reduced Problem
2.2 Boundary Layer Problem . .
3. Future Work . . .
REFERENCES
Figures
1. Comparison of the reduced solution with the true optimal profiie

2. Comparison of the guided S.P. solution with the reduced solution
and the true optimal profile . . . . . . ..

Tables

1. Comparison of total impulse and fuel fraction required for a 40°
plane change maneuver . .

12
13

10



SUMMARY

Research during this period has concentrated on the problem of
aeroassisted orbital plane change. This maneuver requires the use of three
impuises - one to deorbit, one to reorbit and one to recircularize at the new
orbit, The orbit plane change is effected entirely in the atmosphere through
the use of Tift and bank angle control. For circular orbits of nearly equal
radii, it can be shown that the fuel consumption is minimized by minimizing
the energy loss in the atmospheric portion of the trajectory. The research
explores the use of singular perturbation theory to develop an optimal
guidance law for the atmospheric portion.

The results to date indicate that singular perturbation methods can be
applied; however, a difficult terminal boundary analysis is required. The
reduced solution models only the heading rate dynamics, and produces a
realistic profile (altitude versus energy) and control to be flown. A large
terminal boundary layer is required to match the terminal constraint on
altitude. Most of our effort has been directed at approximate methods for
solving the terminal boundary layer equations. The equations result from an
analysis of altitude and flight path angle dynamics on the same time scale.
A nonlinear control law was derived which produces near optimal results.
However, the current solution is difficult to implement because it requires
two switches in the control solution that are heading and altitude dependent.
In general, the solution is very sensitive to switching times. We propose
two alternatives to be investigated during the next reporting period. The
first relies on a linearization of the necessary conditions about the reduced
solution and the second will examine the analysis of altitude and flight path
angle dynamics on separate boundary layers.
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1. PROBLEM FORMULATION

The following three state model has been the subject of our current

research
. *
Y = CLpSVAsinu/ZmCOSY (1)
eh = Vsiny (2)
. *
gy = CLpSV(Ac03p + Mcosy)/2m (3)
where
* - 2
M(h,V) = (2m/C S)[1-u/V r]/pr (4)
r=org + h . (5)

and p is the gravitational constant. The objective is to minimize the energy

loss

e
J=-J0Edt (6)

where E is the total energy per unit mass
2 -
E=V/2-ur<Q0 (7)

The expression for the energy rate in (6) is

. * 2 3
E = -CD (1 + X )pSV /4m (8)



where a parabolic drag polar form is used to define the drag coefficient

Do L (9)

In the above equations the superscript * denotes the 1ift and drag

coefficient values at maximum L/D

*_ 1/2 C*—zc

CL = (Cpe/K) p = %Cpo (10)
The controls are bank angle (u) and the normalized 1ift coefficient

B x
A =C/C (11)

Note that in this formulation we treat E as constant, but account for the

energy loss through the performance index.

In [1] the sensible atmosphere is assumed to occur at ho = 200,000 ft.
The starting velocity and flight path angle (Vo,yo) are derived using a
deorbit impulse AV1 from circular orbit at hc = 100 nm, which is optimized
for the atmospheric maneuver of interest. The initial heading angle is taken
as zero. In the SPT formulation, altitude appears as a control variable in

the reduced problem. The optimal solution has the form
*
h = h(E) (12)

For comparison purposes, in this study the starting energy is chosen to match
that of [1], and ho’ Vo are derived from (7) and (12). From conservation of
energy this results in the same deorbit impulse, but slightly different
values for ho’ Vo' The initial flight path angle is derived from

conservation of angular momentum.



Yo = ~cos T[(rg *+ h )V, - aV))/(rg + h V] (13)

- 1
where s is the mean earth radius and VC = [p/(rs+h)] /2. The vehicle
begins the maneuver with a mass m. and, as a result of the deorbit impulse,

the mass for the atmospheric portion is given by
| m = m_ exp (-AVl/C) (14)
where C is the characteristic velocity. The terminal conditions are:

h(tf) @ 200,000 ft, w(tf) = Vs >0 (15)

Since the condition on h(tf) is Tost in the reduced solution (12), a terminal

boundary layer correction is required.
2. SINGULAR PERTURBATION ANALYSIS

2.1 Reduced Problem

Setting € = 0 in (1-3) the necessary conditions for optimality become

Hy =2, ¥ -E=0 (16)

Yy =0 Acosu = -M (17)
., h_ = arg min {y/E} (18)
0’ o h,u

It can be shown that this results in the following reduced solution:

A = (1 + 2M:)1/2 (19)

sinug = [(1+ M)/(1+ )]/ (20)



) . 2 2 1/2
h, = arg m;n WV +M) 2 He o const. e

where Mo is the value of M for h = ho' The quadrant for the bank angle in

(20) is resolved based on the following inequalities:
0 < Mo < /2 for M <0 (22)
/2 < Ho <7m forM>0 (23)

It can be seen from the above solution that M plays a crucial role in the
solution process. In [1], M was treated as a constant in the dynamics.

Since most of the energy is kinetic, V is weakly dependent on h for
constant E. This can readily be seen from (7) and (5) where changes in h
give rise to small changes in r. Thus, the minimization in (21) results in a
value for M very close to zero. The interpretation is that the maneuver
should be performed at an altitude where gravitational and centripetal forces
nearly cancel one another. For M small, it can be seen from (19,20) that the
maneuver is performed at near maximum L/D and at near 90 of bank angle.
These results are in good agreement with the results in [1]. Figure 1
compares the altitude profiles derived from (21) with the true optimal
profile taken from [1]. The need for a terminal boundary layer analysis is
evident in this figure. However, if the vehicle was not required to exit the

atmosphere, the reduced solution may be sufficiently accurate.
2.2 Boundary Layer Problem

A boundary layer analysis is required to obtain a guidance law that will

both follow the altitude profile defined by (21) (initial boundary layer) and
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Figure 1. Comparison of the reduced solution with the true
optimal profile.




satisfy the terminal constraint on altitude (terminal boundary layer). The

necessary conditions in the boundary layer are:

_ .0 . i
HBL = Aw v+ A Vsiny + AY y-E=0 (24)
BHBL/E)Ll = 0, BHBL/BL2 =0 (25)

where A$ is determined in the reduced solution from (16)

A$ = £9/4° (26)

using the solutions for Ao’ Mo and ho' In (25), L1 and L, represent the

2
horizontal and vertical components of 1ift coefficient

L1 = Asinu L2 = Acosu (27)

which are now used as control variables in place of X and u.
The first condition in (25) results in

*_ 2 1/2
L, = (VO/V) (1 + M) /cosy (28)

where Mo’ Vo are the values of M and V corresponding to h = ho for the
current value of E. This solution approaches the corresponding reduced

solution as h approaches ho'
The second condition in (25) yields
*_ *x %k 2 g
= -(CL/CDV )AY (29)

Ly

which can also be shown to approach the reduced solution as h approaches ho’

i



where

*

° . XV mse 30
Ay = Ly Vo M/ (30)
Unfortunately, evaluation of AY needed in (29) requires the solution of a
two-point boundary value problem. When close to the reduced solution it may
be possible to use (30), which results in the following expression for flight

path angle rate
. * 2 2
y = CLpSV(MCOSY - VoMo/V }/2m (31)

For y near zero and h near ho’ (31) simplifies to

. *
y = C oSV (M-M ) (32)

To obtain a feedback solution for the general case we neglected the
second term in (24). This was done on the basis that Az= 0 and y is small
over the entire optimal trajectory. This results in the following explicit

solution for L2

Ly = - Mcosy + (Mcos'y = Ly +1)/2 (33)
The first term on the right hand side of (33) is simply the 1ift required to
maintain zero flight path angle rate. The second term is always > 0 and
asymptotically approaches zero as h - ho and y > o. Thus this solution also
asymptotically approaches the reduced solution. Both solutions in (33)
satisfy the conditions that HBL is minimized and HBL = 0. During the initial
boundary layer the + sign is used when h < ho to generate a positive flight

path angle rate, and the minus sign used when h > ho' The corresponding




value of the costate variable is

* . *x X
Y E)/y (34)

o
v
which approaches an indeterminate form (0/0) as h ho and y 0. The + sign
js used to initiate the terminal boundary layer.

At this time repeated trial runs are required to determine the switching
time so that the desired final heading is achieved when the altitude reaches
200,000 ft. Also, a characteristic of these profiles is that Ll remains
close to 1.0 throughout, while M grows to a large negative number near the
end (on the order of -2.0). This is due to the presence of p in the
denominator of (4). Thus there is every indication that the sign should be
switched again in (33) prior to the end of the trajectory so that L2 again
becomes small. This is also a general characteristic of the optimal profiles
in [1].

From (29) it is apparent that L2 should be a continuous function of
time. There is a discontinuity that occurs at the switch to the terminal
boundary layer which 1is a consequence of the singular perturbation
approximation. A second discontinuity occurs at the second switch which is a
consequence of neglecting the second term in (24). However, it was observed
that the second term in (33) passes through a minimum during the ascent
phase, and the second switch was executed at that time to minimize the
discontinuity. It is felt that this should more closely approximate the true
solution if we were able to retain the second term in (24) in the analysis,
and still preserve an explicit solution for L2.

A comparison of the resulting flight path with that in [1] for a 40
plane change is illustrated in Figure 2. Table 1 compares the impulses

required for the maneuver. Note that the singular perturbation solution
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TABLE 1

COMPARISON OF TOTAL IMPULSE AND FUEL FRACTION
REQUIRED FOR A 40° PLANE CHANGE MANEUVER

............................................................................................................................................................

............................................................................................................................................................

GUIDANCE DEORBIT BOOST REORBIT TOTAL FUEL
LAWS IMPULSE  IMPULSE IMPULSE  IMPULSE FRACTION
(ft/s) (ft/s) (ft/s) (ft/s)

............................................................................................................................................................

OPTIMAL 125. 6470. 177. 6772. .49
S.P. SOLUTION 126. 6642. 214 6982. 50
GUIDED SOLUTION 374, 7651. 122, 8147. 56
SINGLE IMPULSE * * * 17497. .83

............................................................................................................................................................

............................................................................................................................................................
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results in a fuel fraction close to the true optimal solution, and is
considerably better than the guided solution in [1]. A comparison to the
fuel fraction needed for a purely impulsive maneuver is also given which

clearly demonstrates the advantage of aero-assisted orbital transfer.
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3. FUTURE WORK

During the next reporting period we plan to investigate two alternatives
to constructing a boundary layer solution. The first 1is based on a
lTinearization of the necessary conditions in the boundary layer to obtain a
linear feedback solution without neglecting the second term in (24) This
method has been previously used in [2]. The second approach analyzes the
altitude and flight path angle dynamics 1in separate layers [3]. This
approach also will yield a feedback solution form, but one which is

nonlinear.
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